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Abstract

The classical and quantum dynamics for an n-dimensional generalization of the kicked planar rotator is considered. The
classical system typically shows diffusion in phase-space which is similar to that of the one-dimensional case. For the
quantized system we find in the limit » — oo the free undisturbed motion. For finite n < 26 our numerical investigations
always lead to localization independent of the actual value of n.

PACS: 05.45.4+b; 03.20.4i; 03.65.—w

1. Introduction

Quantum signatures of classically chaotic systems have attracted increasing attention in the last 10-15
years [1-5]. One particular class of systems which has been investigated is characterized by time-periodic
Hamiltonians [6]. The most prominent member of this class is the so-called kicked planar rotator. This is a
point particle which moves freely along the unit circle in the plane. This motion is perturbed by time-periodic
kicks whose strength does depend on the actual position of the particle. Accordingly, the Lagrangian of this
system may be written as

+0o0
Li(8,8,1) = 419> = Kcosd Y 5(§ —j). (1)
JrE— 50

Here the angle ¢ € [0,27) describes the position of the particle and / stands for its momentum of inertia
with respect to the origin. Furthermore, 7 > 0 is the period of the kicks and K > 0 is the maximal kicking
strength. It is this “stochasticity” parameter K which controls the classical dynamical behavior of the system.
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Near K72/I = 0.9716. .. a transition from local to global stochasticity occurs [7]. This is typically visible in
the linear increase of the system’s energy in time.

In the present paper we will introduce an n-dimensional generalization of the system characterized by (1)
and study its classical as well as its quantum dynamics. More precisely, we consider the free motion of a point
mass on the n-dimensional unit sphere embedded in the (n 4 1)-dimensional Euclidean space. This motion is
periodically disturbed by kicks, whose strength depends only on one of the n + 1 Cartesian coordinates. On
the classical level this generalized system is essentially identical to the one-dimensional case, as the effective
equation of motion does not depend on the number of degrees of freedom. This is in contrast to the quantum
dynamics of the n-dimensional kicked rotator, which explicitly depends in a rather complicated way on the
number n. The study of this n-dependence has been our primary motivation for this work. Let us also mention
that our model for n = 2 is somehow related to the kicked top extensively discussed by Haake and coworkers
[8]. See also Ref. [5].

Our paper is organized as follows. In the next section we explicitly define the n-dimensional generalization
of (1) which we are going to investigate. Section 3 is devoted to the study of the classical dynamics. We
integrate the classical equation of motion and obtain a certain n-dependent generalization of the well-known
standard map. The observed diffusive behavior of this map is compared with that for the one-dimensional case.
In Section 4 we will present analytical as well as numerical results for the quantum dynamics. In the limit
n — oo the n-dimensional kicked rotator behaves like a free rotator (without kicks). For finite values of n
we always observe — by numerical methods - the phenomenon of so-called localization. The corresponding
localization length is, in contrast to what one might expect, found to be independent of n up to values as large
as 26. Unfortunately, our numerical method does not allow to draw firm conclusions for even larger values of
H.

2. The model

The n-dimensional generalization of the planar rotator is simply the free motion of a point mass on the unit
sphere embedded in the (n + 1)-dimensional Euclidean space

n+1
Zx%:l}. (2)

r=1

§" = {(JC1,-..,xn+1) e R"!

The unit sphere S" is usually parametrized by polar coordinates,
X, =e,sin, r=12,...,n, 72 = Xp41 =cCOs, 0 < (3)

Here ¢ denotes the angle between the unit vector x := (x,...,X,41) and the z-axis which is chosen to be the
coordinate axis for the last component of x. In the above ¢; stands for the ith component of an arbitrary unit
vector e := (ey,...,e,,0) € R"! perpendicular to the z-axis. Obviously, 2 =32 +&°sin® 9 is the squared
modulus of the velocity of a point particle moving along a path x = x(r) € 5"

The Lagrangian of the n-dimensional kicked rotator is then defined by

L.(9,8,e,1) =11 (192 + ézsinzﬁ) — Kcos?d i 8 (& —~ j) . (4)
j=—o0

As in (1), I is the moment of inertia, K is the kicking strength and 7 the period of these kicks. Due to the
rotational invariance of (4) about the z-axis we have n — 1 constants of motion,

M :=04L,/dé = Iesin® 9. (5)
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They allow the reduction of system (4) to an effective one-dimensional system, which in turn allows for a
solution of the classical equations of motion in terms of a time-periodic classical map in a reduced phase-space.
We will derive this n-dimensional generalization of the standard map in the next section.

3. The classical dynamics

Due to the constants of motion (5) the dynamics of the system (4) can be reduced to a one-dimensional
system characterized by the effective Lagrangian

] : M
L (9.9, 1) = %Iﬁz TR — Kcost Z (— —j) (6)

where M :=|M|. Let us note that for the special case M = 0 the above Lagrangian is identical to that for the
planar rotator. Indeed, classically the case M = 0 cannot be distinguished from the system (1) as in the former
case the motion takes place in a plane containing the z-axis. Let us add, that in this case the parametrization
(3) is singular and should be replaced by 0 < ¢ < 2. In the general case M > 0 the Lagrangian (6) may be
interpreted as that for the kicked planar rotator in an additional time-independent (effective) potential.

The classical equation of motion, which may be derived form L., can easily be reduced to a discrete-time
map on the two-dimensional classical phase-space (2 := [0,7] x R. This is because (6) describes a regular
motion between two successive kicks. Introducing the quantities z; = z(j7) = cos¢(j7), the position (z-
coordinate) at the jth kick, and Z; :=lim,|o Z (j7 + €), the corresponding velocity just after the jth kick, the

equation of motion leads to the phase-space map (3; := arccos z;, ¥; = —7;/ sin ;)
T:02— 0,
(0,35 = (D41, P j41). 7

This map is explicitly given by
zjr1 = Ajsin [@;7sgn(2) +&;] . Zje1 = wjA; sgn(Zy) cos [wjT sgn(Z) + ;] — k(1 —27),  (8)

where we have set

2 2 5.} 2
4y l_ﬂwhz_, v, = \/(M/I) FEDD G esin(/4)

)
1 z

sgn(z) :=z/|z|, for z # 0,
i=1, for z =0, £

and introduced the rescaled kicking strength « := K7/I. Note also that lim; o[ (j7+&) —Z (jT—¢&)] = K(Z —-1).
We leave it to the reader to show that for M = 0 the map (7), respectively (8), reduces to the well- known
standard map for the planar rotator.

We have iterated the map (7) numerically for various values of the parameters « and M using units such that
I =7 =1. Figs. 1-3 show typical phase-space portraits generated by the above map. It is obvious that with an
increasing value of «, keeping M fixed, the islands of regular motion become smaller. Whereas an increasing
M for fixed « will cause growing islands of stability. In particular, Fig. 1 displays, because of M = 0, the
well-known phase-space portrait of the kicked planar rotator.

In order to study the stochastic nature of the map (7) quantitatively, we have looked at the diffusive growth
of the energy E; := ijz /2. For sufficiently large « it is expected that a random-phase approximation is valid
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Fig. 1. Phase-space portrait generated by the map (7) for parameter k = 1.5 and M = 0.
Fig. 2. Same as Fig. | fork =15 and M = 1.
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Fig. 3. Same as Fig. 1 fork =25 and M = |.

[7]. That is, one assumes a uniform distribution for @#; in the interval [0,7] and an independent distribution

for 4, which is symmetric about the origin. These assumptions directly lead to a linear (hence diffusive)
growth of the energy with time. In other words, the diffusion coefficient

D(k) :=j£I20(Ej—Eo)/j (10)

exists. Its leading dependence on « for large « is given by D(k) ~ 1K2/4 = Do(x), Kk — . For the
calculation of subleading corrections one has to go beyond the random-phase approximation. For the special
case M =0 this has been done by Rechester and White [9] (cf. also Ref. [7]) with the result

D(k)/Do(x) ~ 1 =2[o(K) + J{ () = J5(x) = J5(x)], (11)

where J, denotes the Bessel function with index ».
We have calculated the x dependence of the diffusion coefficient (10) for various values of M with the result
that D(«) is well described by (11) independent of the parameter M. Figs. 4 and 5 present our results for
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Fig. 4. The diffusion coefficient D(«)/Dy(«) for M = 0. The solid line shows the expected analytical behavior (11).
Fig. 5. Same as Fig. 4 for parameter M = 10.

M =0 and M = 10, respectively. The observed enhancement in the diffusion coefficient near k ~ 27m, m € N,

is attributed to so-called acceleration modes [10].
In concluding this section we may say that the classical n-dimensional kicked rotator is, as far as its stochastic
nature is concerned, identical to the one-dimensional kicked rotator.

4. The quantum dynamics

Let us now consider the quantum version of the model introduced in Section 2. It is characterized by the
Hamiltonian

2 — .
B, = —§A+Kcos@j§o6(;—1). (12)

Here A stands for the Laplace-Beltrami operator defined on the unit sphere S” and @ represents the position
operator corresponding to the polar angle 4.

Before we study the unitary time evolution generated by (12) we comment on the operator A and the Hilbert
space LZ(S") it is acting on. It is well known [11] that L2(S") can uniquely be decomposed into invariant
orthogonal subspaces D* each of which carries a unitary irreducible representation of the group SO(n + 1),
labeled, in analogy to SO(3), by £=0,1,2,...: L}(§") = GB;?:ODZ. The ‘th subspace has the finite dimension

r¢+n-1)
¢+ I(n)’

di=20+n-1) (13)

where I" denotes Euler’s gamma function. In fact, the subspace D’ is the eigenspace of A corresponding to
the eigenvalue —¢(£+n— 1), see Ref. [11]. An orthonormal basis in D’ is the common eigenbasis {|£M)} A4

of the n — 1 commuting Casimir operators of the subgroups SO(p), p = 2,...,n, appearing in the group
chain SO(2) C ... C §O(n) C SO(n+ 1) (for details see Ref. [12]). Here M stands for the (n — 1)-tuple
M = (my,my, ..., my_g,mu_1) Where |m| <my < ... <mp_r <my_1 < ¢ withm € Z and m, € Ny for

r=12,...,n— 1. The spectral decomposition of /A now reads
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A=—StE+n-1)3 [EMyeM]. (14)

=0 M

With the above remarks we can discuss the time evolution generated by the Hamiltonian (12). Let us first
consider the one-Kick evolution operator

U :=exp (%}A) exp (—%Krcos @) , (15)

which describes the time evolution for one period 7 starting right before a kick. If |¥;) denotes a state right
before the jth kick, the time evolution of this state is given by

W) = Ul¥)). (16)

The properties of this quantum map are our main concern.

In order to make (16) more explicit we expand the state [%;), for each j, into the basis {|[{M)}: |¥)) =
Yoo am(f) [EM), where aga(J) = (EM|¥;). Rewriting (16) in terms of these expansion coefficients
yields the recurrence relation

am(j+1) =exp (—%7—'5(6 +n— l)) Z apr (J) (M| exp[—(i/R) KT cos O] [£/ M), (17)
& M

What remains to be done is the explicit calculation of the matrix element appearing in (17). In doing so we will
work in the coordinate representation Yyr (1, e) := (i, e[{M), that is, with the n-dimensional generalization
of the spherical harmonics. They are orthonormalized according to

/ dd sin" "' 9 de Yoo (0, e) Yiaq (0, e) = 0006 p 10 (18)
Sn
Here and below we will adopt the notation and results of Ref. [13]. In terms of the spherical harmonics the
matrix element reads

(M| exp[—(i/h)Krcos O£/ M) = / ddsin" 9 deexp[ —(i/h) Krcos 91 Y (3, €) Yppgr (D, e).
$ (19)

In order to make this integral somewhat more explicit we expand the exponential function in terms of spherical
harmonics,

exp[—(i/h)Krcos ¥] = Zan@(ﬁ,e) By (A), (20)
¢1=0

where we have introduced A := K7 /A for brevity. Because of its invariance under rotations about the z-axis
only those spherical harmonics with M"” = @ := (0, ...,0) contribute to the expansion of this exponential. The
expansion coefficient is explicitly given by

Bi(A) = f ddsin"~' Fde V5 (9, e) exp(—iAcos )
SI?

= VdelS"| (5 (n+ 1) (~D22/ )" gy (D). (21)

For the integration we have made use of the fact that ¥,» (7}, e) is expressible in terms of a Gegenbauer
polynomial. See, for example, Ref. [11].
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In a second step we make use of the equality

F!I

Yom (O, e) Yro(d,e) = }S”ld

ZYW(& e) (L0, "0\ (£")0ON (€2 eM|E M0 0),  (22)

which can be derived from Eq. (34) in connection with Eq. (15) of Ref. [13] Here (£, M; o My|(£162)EM)
denotes a generalized Clebsch-Gordan coefficient and |$"| := = 2t/ 2/ r ( (n—+ 1)) stands for the volume of
the unit sphere $". Making use of the orthogonality relation (18) we ﬁnally arrive at the result

(tM| expl —(i/F) Krcos O] |4/ M § : T’; le B (A) (£'O; £"O|(£'8"YEOY (L8 Y LM M £ O).
E// é
(23)

Using the fact that the Clebsch-Gordan coefficient (¢/M’; 2" O|(£¢")¢M) vanishes unless M = M’ we can
put the map (17) into the simple form

Via = .
arpm(j+ 1) =exp (—12—13(5 +n~ 1)) Z apm(J) Ber (M) G (€, 03 0), (24)
& =0
where we have introduced
G (2, 0"56) = fg‘(; ({05 80| (28" OY (88 M| M; 27O, (25)
¢

This quantity is of purely geometric origin and, in essence, controls which angular-momentum eigenstates [£AM)
can be reached from an initial eigenstate |¢’AM) due to an angular-momentum transfer £/ stemming from the
kick. In contrast to this, the term By~ (A) is of dynamical origin and represents the weight with which the kick
contributes to the angular-momentum transfer,

The map (24) also explicates that the (n— 1)-tuple M is conserved. That means, there exist n — 1 constants
of motion. These are in fact the counterparts of the n — 1 classical constants of motion (5). In particular,
selecting an initial state [¥) such that agaq(0) o 84,0, the map (24) represents the quantum version of the
classical map (8) with M = 0, hence, the well-known standard map. Whereas (8) does not depend on the
number n of degrees of freedom, the quantum map (24) explicitly depends in a rather complicated way on .
With (24) we have N different quantum versions for the classical standard map.

Let us note that in principle we are now in a position where we could study the map (24) numerically.
However, the explicit calculation for the Clebsch-Gordan coefficients is rather complicated and also requires an
extensive numerical effort [13]. Only the special initial condition M = O allows for a practicable numerical
iteration as in this case the Clebsch-Gordan coefficients are available in closed form [13]. Hence, in the
following we will concentrate on this special case.

4.1. The special case M = O and the large n limit

In this section we consider the quantum map (24) with the special initial condition M = . For convenience
we use the notation a,(j) := aso(j). As we have already mentioned, the Clebsch-Gordan coefficients for this
case are known in closed form [13]. Hence, we are also able to express Go(£;,#2;43) in a closed form,
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r(J+n—1)
Go(£y, by 63) =
cbuaiat ) VST (i D) Tn— D) F(J+ L (n+ 1))
b+ -1 T+ 1 (n=-1))
xl;l( N LT . (26)

This expression is only valid if J := (£} + ¢, + ¢3) /2 € Ny and the £; obey the triangular relation i+l 248 >
|€; — 4], i, j, k € {1,2,3}. These conditions are similar to those known for the case n = 2. Whenever J is not
an integer or the triangular relation is not fulfilled, the Clebsch-Gordan coefficients and hence Gy (4;, 4y; ¢3)
vanish,

With this result the map (24) reduces to

oo

i
ar(j+1) =exp (—%€(€+n~ 1)) > ap(j) Ben(X) Go(2,0";0). (27)
£,01=0

This recurrence relation together with the explicit expression (26) is now in a form which allows for a numerical
iteration.

However, before we are going to report our numerical results let us briefly consider the limit n — oo.
Using the asymptotic form of the Bessel function for large index and the Stirling formula applicable for large
arguments of the gamma function one finds the following leading-order terms for n — oo,

Bon (A) = \/|$"|dp (—ia/m)*,

nt’/2 NINCE YRS

f, /!, o~ ) 28
Gol.£7:4) VISde TU—E+ 1) I(J-0+1)I(J-0"+1) (23)
Inserting these approximations into (27) results in
_ ihr = (=D T F D) TEFTD)
alj+ 1) exp (_ TR ”) 2w FT rrnru—e+nra-o+n @

£.67=0

It is obvious that in the limit n — oo the leading term corresponds to ¢ = 0. Due to the triangular relation the
condition £ = 0 also implies £’ = £. Therefore, in essence, we end up to leading order in 1/n with the free
evolution

ag(j+1) =~ exp (—?—;3(€+n—1)) ar(j). (30)

This fact may be explained as follows. Whereas in the classical limit the motion takes places in a two-
dimensional plane, say the (x,,x,;)-plane, quantum mechanics allows also for fluctuations in the other
degrees of freedom (xy,...,x,—1). Hence, in the large » limit the quantum model may be viewed as a planar
kicked quantum rotator coupled to (n — 1) harmonic oscillators. The increase, respectively the decrease, in the
energy is compensated by these oscillators.

4.2. Numerical results for M = O and finite n

We have numerically iterated the map (27) for various parameter sets and various initial states |¥,). From
the resulting angular-momentum distribution |a,(j)|* we have calculated the expectation value of the kinetic
energy,
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Fig. 6. Expectation value (31) of the kinetic energy for a resonance. Parameters are A=/ =A=1,7=47 and n =2.
Fig. 7. Same as Fig. 6 for the quasi-periodic case i=7=7/=A=1and n=2.
ﬁ2 A
E(j) = (W] = GF2D) OW) = 2 00 +n=Dla(), (31)
=0
and the coarse-grained angular-momentum distribution
,].max‘f'Aj
: S 12
Ar(jma, AJ) = A.j_jZH!af(;)l. (32)

In the above A is a cutoff parameter and jn.x and Aj are chosen such that (32) results in a quasi-stationary
coarse-grained angular-momentum distribution, that is, it becomes independent of jmax. As the long-time behav-
ior of the above quantities is, in essence, independent of the initial state we present only results for |¥g) = [00).

As in the one-dimensional case we observe resonances, that is E(j) oc j2, if the quantity hr/21 is a rational
multiple of 2ar. A typical resonance is shown in Fig. 6 where the units have been chosen to / =/ =1 and
7 = 4qr. Here, the angular-momentum distribution |a¢(j)|? does not become quasi-stationary. With increasing
time higher and higher angular-momentum eigenstates are excited. After, say, 500 kicks a cutoff parameter
A =7000 is no longer sufficient. The numerical iteration is no longer practicable.

For the non-resonance case we used units / = h =7 =1, whence K = A = x. A small kicking strength, that
is, K < 4.5, has been found to lead always to quasi-periodic oscillations in the energy (31). See Fig. 7 for a
typical example. Only the lowest angular-momentum eigenstates are excited and, hence, an angular-momentum
cutoff A ~ 20 is sufficient.

For a larger kicking strength the energy (31) initially increases linearly in time, displaying the classical
behavior (10). After about 20-50 kicks the quantum expectation value deviates from the classical one and
shows fluctuations about a constant value (see Fig. 8). This phenomenon is called dynamical localization
and is known from the one-dimensional quantum rotator. Indeed, the corresponding state |¥;) is localized in
(angular) momentum space. Its coarse-grained angular-momentum distribution (32) becomes quasi-stationary,
for sufficiently large jm.x and shows an exponential decay in ¢,

Ay ~exp(af). (33)

The constant « is the negative inverse of the so-called localization length. A typical coarse-grained angular-
momentum distribution is shown in Fig. 9 for which we have chosen j.x = 500 and Aj =50 in (32). The solid
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Fig. 8. Same as Fig. 6 for parameters fi=7=17=1, A=9 and n = 2. Here A is sufficiently large to lead to localization. The dotted line
indicates the classical diffusion according to (10).

Fig. 9. The coarse-grained angular momentum distribution A, for parameters i =7 =1 =1, A = 14 and n = 2. The localization is indicated
by the solid line which is a fit to the exponential decay (33).
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Fig. 10. The negative inverse localization length a as a function of A = k (units i = 7 = [ = 1) obtained from a fit of (33) to our
numerical data for n =2 (), n=4 (+) and n = 16 (). The solid line displays the analytical behavior (34).

line is a fit to the exponential behavior (33). According to Shepelyansky [14] one expects the localization
length to be identical with the classical diffusion constant (10), that is,

a=—1/D(k). (34)

Despite the fact that Shepelyansky has derived (34) for the n = 1 case we find that this relation also holds for
n > 1. In Fig. 10 we compare the analytical behavior (34), where D(«) is given by (11), with our numerical
results obtained from a fit to (33) for various values of n. The n-independence of the localization length is
explicitly visible in Table 1, where we show numerical results for & = a(n) up to n =26. Within this range of
n we do not see any signature of a transition to the free motion expected from the limit n — oo as discussed
in the previous section.
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Table 1

The negative inverse localization length as a function of the number of degrees of freedom n. Parameters are / =fi=7=land k = A= 11.
Although these numerical values are systematically above the theoretical value @ = —4.1248 x 1072 expected from Eq. (34), they do not
indicate any n-dependence of «.

n —a x 10? n —a x 10? n —a x 102 I —a x 10? n —a x 10?
1 2.5658 6 2.1610 12 3.1164 18 3.3897 26 2.9807

2 3.6280 8 2.8914 14 2.9679 20 3.0227

4 3.0773 10 2.3077 16 3.2618 22 2.5675

5. Concluding remarks

In this paper we have studied the dynamics of an n-dimensional generalization of the kicked planar rotator.
Classically, this system is found to have the same stochastic properties, that is diffusion in phase-space, as those
known from the well-studied case n = 1. This is not surprising as the classical dynamics does not depend on
the number of degrees of freedom.

This is in contrast to the quantum dynamics which explicitly depends on this number n. Indeed, taking the
naive limit # — oo one recovers to leading order the free quantum motion . That is, the kicks are lost in the
sea of the infinitely many degrees of freedom. However, signatures of this disappearance have not been found
by us for any finite value of n which we have investigated. It turned out that we are limited by n < 26 for
an explicit numerical calculation. In this range for the number of degrees of freedom we found no significant
dependence on n. What we did find are resonances, quasi-periodicity and localization known from the quantum
dynamics of the kicked planar rotator. It is still unclear, whether the transition from dynamical localization to
free motion takes place at a finite value of n or only in the limit n — oo 3. So more work is clearly needed
for a fuller understanding.
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